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Abstract: We point out that aspects of quantum mechanics can be derived from the

holographic principle, using only a perturbative limit of classical general relativity. In

flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter

does not contain Newton’s constant and cannot operate via gravitational backreaction.

Instead, it is protected by—and in this sense, predicts—the Heisenberg uncertainty

principle.
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1. Introduction

According to the holographic principle [1–4], classical spacetime geometry and its mat-

ter content arise from an underlying quantum gravity theory in such a way that the

covariant entropy bound [5]—thus far only a well-supported conjecture relating mat-

ter entropy to the area of surfaces—is automatically satisfied. To some degree, this

expectation was borne out by the AdS/CFT correspondence [6], which provides a non-

perturbative, manifestly holographic definition of string theory in certain spacetimes [7].

By deriving consequences and implications of the holographic principle, we may

learn how specific laws of physics will arise from quantum gravity even before we know

the underlying theory in detail. An example of such an implication is the general-

ized second law of thermodynamics (GSL) [8–10]: the generalized covariant bound

implies [11] that the total entropy of ordinary matter systems and black holes will

never decrease in any physical process (assuming the ordinary second law holds), a

conjecture widely believed to be true but difficult to prove by other means.

The purpose of this paper is to expose another such implication. Thus, we adopt

the holographic relation between information and geometry as our axiomatic starting

point:

S ≤
∆A

4l2
Pl

. (1.1)

– 1 –



This is a generalized version [11] of the covariant entropy bound. The area difference

∆A will be defined more carefully in Sec. 2. For now we note only that the relation

involves a fundamental unit of length, the Planck length, reflecting its origin in quantum

gravity. (We set kB = c = 1.)

The entropy S is generally a measure of information; in quantum field theory,

it is identified with the logarithm of the number of independent Fock space states

compatible with the geometric boundary conditions.1 But note that ~ (the value of the

equal-time commutator of a field and its conjugate momentum) is not explicitly fixed

by our assumption. It will be derived , using the Raychaudhuri equation of classical

general relativity, which contains only Newton’s constant G.

As we review in Sec. 3, the Raychaudhuri equation allows us to eliminate Newton’s

constant from Eq. (1.1) in regions where gravity is weak. This yields an important

intermediate result, the Bekenstein bound [12], which involves only the combination

l2
Pl

/G of physical constants.

In Sec. 4 we show that the Bekenstein bound would be violated if the position and

momentum uncertainties of a particle were allowed to become sufficiently small, i.e., if

δx δp ≪ l2
Pl

/G. (1.2)

From this we conclude that physical states in Minkowski space must obey

δx δp & l2
Pl

/G. (1.3)

This inequality is the the Heisenberg uncertainty relation. Thus, Planck’s constant

emerges as a derived quantity, expressed in terms of the geometric unit of information,

l2
P
, and Newton’s constant G:

~ ≈ l2
Pl

/G. (1.4)

Of course, the relation Eq. (1.4) is necessary for the first law of thermodynamics to

be satisfied by the entropy S = πR2/l2
Pl

, temperature T = ~/4πR, and mass M = R/2G

of a Schwarzschild black hole. Indeed, the calculation of the Hawking temperature

remains the only known semiclassical method for calibrating the numerical coefficients.

But that computation takes quantum field theory as a starting point. Here we argue

that the Planck constant can be obtained directly starting from a principle of quantum

gravity.

How can it be legitimate to use classical general relativity to derive a key aspect

of quantum mechanics? Einstein’s theory offers only an approximate description of

1We stress this distinction since we do not wish to assume that the unified theory underlying

Eq. (1.1) is in fact quantum mechanical in nature, but rather to leave open the possibility that it may

encode information by means other than the states of a Hilbert space.
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Nature, which will surely be transcended when the problem of unifying quantum theory

and gravity is solved. Quantum mechanics, however, is often assumed to be immune

to this fate. This prejudice—implicit as soon as we try to “quantize gravity”—is not

without merit: It has proven difficult to modify quantum mechanics sensibly. More

importantly, string theory is a perfectly quantum mechanical theory which does include

gravity. However, it is not clear how much of string theory has been explored, and how

it may be related to a realistic universe.

Indeed, there are reasons to question the assumption that quantum mechanics is

universal. It is unclear how to ascribe operational meaning to quantum mechanical

amplitudes in highly dynamical spacetime regions, because experiments cannot be re-

peated. Such difficulties become exacerbated at spacelike singularities. For quantum

mechanical evolution to proceed, a time coordinate would have to be singled out among

the directions of spacetime. It would have to survive the crunch and live on as a quan-

tum mechanical evolution parameter. But near a generic singularity, time breaks down

as a geometric object no less than space does. Attempts to resolve non-timelike sin-

gularities in string theory [13–16] have so far only yielded evidence that this covariant

behavior persists.

In the absence of a sufficiently general definition of quantum mechanical observ-

ables, it therefore remains conceivable—and perhaps plausible—that quantum mechan-

ics is no more fundamental than classical spacetime, and that they both emerge from

a unified description only in certain limits. The arguments presented in the present

paper are consistent with this viewpoint. Note that our derivation applies only in

weakly gravitating regions, leaving open the possibility that in some backgrounds (e.g.,

in cosmology or gravitational collapse) quantum mechanics may not emerge in its con-

ventional form.

2. Entropy bounds

In this section we introduce various entropy bounds and the holographic principle. We

explain why we choose Eq. (1.1) as our axiomatic starting point. This is a review

section and is not itself part of the derivation. Thus, we will permit ourselves to write

the Bekenstein bound in terms of ~, and to make occasional use of the relation l2
Pl

= G~

for the purpose of elucidating the properties of the bounds.

2.1 Covariant bound

The covariant entropy conjecture [5] applies to any spacetime region that is well de-

scribed by classical general relativity. It states that the entropy of matter on any
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light-sheet L of any two-dimensional surface B obeys

S(L) ≤
A

4l2
Pl

, (2.1)

where A is the area of B. A light-sheet is a 2+1-dimensional hypersurface generated

by nonexpanding light rays orthogonal to B. A full review is found in Ref. [4].

Any surface B has four orthogonal null directions, at least two of which are non-

expanding and give rise to light-sheets. For example, a spherical surface in Minkowski

space has two light-sheets corresponding to past and future light-cones ending on B

(Fig. 1). When neighboring light-rays intersect, the expansion becomes positive, and

the generating light-rays must be terminated. This is why the light-sheets in Fig. 1

stop at the tips of the cones.

another light−sheet

time

light−sheet L

surface B

expanding null directions

Figure 1: A two-dimensional surface and its light-sheets

Gravitational backreaction plays a crucial role in preventing violations of this

bound. In realistic systems, an increase in entropy is accompanied by an increase

in energy. Energy focusses light rays by an amount proportional to G. Thus it hastens

the termination of a light-sheet at caustic points, preventing it from “seeing” too much

entropy.

We have no quantitative explanation why this backreaction should always suffice

for the holographic bound. Ultimately this will have to be explained by an underlying

theory in which information, rather than matter, is fundamental. But at a qualitative

level, the notion of gravitational focussing appears to capture a key aspect of the bound.

Decreasing Newton’s constant suppresses the gravitational backreaction and allows

more mass and entropy on the light-sheet. But the bound, A/4G~, is inversely propor-

tional to G and hence compensates by becoming more lenient as G → 0, and trivial for

G = 0.
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2.2 Bekenstein bound

A version of Bekenstein’s “universal entropy bound” [12] appears as a key intermediate

result in our argument. In its original form, the bound states that the entropy S of

any weakly gravitating matter system obeys

S ≤ 2πMR/~, (2.2)

where M is the total gravitating mass of the matter and R is the radius of the smallest

sphere that barely fits around the system.

The absence of Newton’s constant in Bekenstein’s bound is notable. It renders

Eq. (2.2) independent of the strength of gravity, G, in its regime of validity. In par-

ticular, the bound remains nontrivial when gravity is turned off completely (G = 0).

Therefore, gravitational physics cannot play a role in upholding it, quite unlike the case

of the holographic bound.

If one substitutes for M using the weak gravity condition

M ≪ R/G, (2.3)

it is immediately apparent that the Bekenstein bound, in its regime of validity, is

significantly tighter than the covariant bound, Eq. (2.1). To appreciate the difference,

consider a single massive elementary particle. If we take M to be its rest mass, the

particle can be localized to within a Compton wavelength: R ≈ ~/M . Its entropy

is of order unity: S ≈ 1. The Bekenstein bound, 2πMR/~, is also of order one, and

therefore is roughly saturated! The holographic bound, however, is given by the surface

area in Planck units, πR2/l2
Pl

, which is typically a huge number. E.g., for an electron,

the holographic bound gives S ≤ 1044, which is correct but rather uninteresting.

In recent years the holographic bound, despite its relative weakness, received far

more attention than the Bekenstein bound. ’t Hooft [1] and Susskind [2] ascribed fun-

damental significance to a bound in terms of area, asserting that the number of degrees

of freedom in quantum gravity is given by the area of surfaces in Planck units—a con-

jecture that received strong support by subsequent developments in string theory [6].

Moreover, their holographic bound has turned out to admit the covariant formulation

(2.1), whose apparent validity in strongly gravitating regions provides the most con-

vincing evidence yet for the significance of the holographic principle in all spacetimes.

The Bekenstein bound has lacked a similar interpretation as a direct imprint of

fundamental physics. It has been regarded mainly as a practical limit on information

storage and transfer. Moreover, it contains quantities (energy, radius) which are well-

defined only in special backgrounds. This appeared to preclude its generalization to

arbitrary spacetimes—a prerequisite for a fundamental role. The result of Ref. [17],
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however, clarifies that the Bekenstein bound should properly be viewed as expressing

the constraints placed by the holographic principle on the physics of flat space.

2.3 Generalized covariant bound

The Bekenstein bound is much tighter than the covariant bound, but also much less

generally applicable. Thus it is clear that neither bound can imply the other. This has

obscured the relationship of Bekenstein’s bound to the holographic principle.

Soon after it was first proposed, it was noticed [11] that the covariant bound implies

the generalized second law of thermodynamics (GSL) [8,9] for matter that collapses to

form a black hole. However, in the form Eq. (2.1) the covariant bound is not strong

enough to imply the GSL for matter that is added to an existing black hole. This

motivated Flanagan, Marolf, and Wald [11] to write down a stronger version of the

covariant bound,2 from which the GSL does follow in all cases.

light−sheet
∆L

time

partial

Figure 2: Partial light-sheet contracting from area A to A′.

Consider a partial light-sheet ∆L, which is terminated prematurely, before the

light-rays self-intersect (Fig. 2). In general, ∆L will not capture as much matter (and

as much entropy) as the fully extended light-sheet. On a partial light-sheet, the final

area spanned by the light-rays, A′, will be nonzero and, by the nonexpansion condition,

A′ ≤ A. Thus it is natural to conjecture a “generalized” covariant entropy bound

(GCEB),

S(∆L) ≤
A − A′

4l2
Pl

. (2.4)

When this inequality is applied to weakly gravitating systems, it does in fact imply the

Bekenstein bound [17], as we will now show.

2In Ref. [11] the emphasis was on showing that certain local conditions on entropy density and

energy density are sufficient for the (generalized) covariant bound (see also Ref. [18]). Here we make

no reference to such phenomenologically motivated assumptions and derivations. Rather, we will

consider the GCEB as an axiomatic starting point.
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3. Derivation of the Bekenstein bound

In this section, we show that the GCEB implies the Bekenstein bound. Instead of re-

producing the rigorous derivation recently given in Ref. [17], we will present a simplified

argument which captures the main idea and yields the Bekenstein bound up to factors

of order unity.

Consider an arbitrary, weakly gravitating system of mass M , which fits into a

sphere of radius R—for example, the earth. In order to apply the covariant bound, one

has to construct a light-sheet that intersects the worldvolume of the earth. There are

many possibilities, and most will not lead to interesting results. For example, one could

begin a light-sheet on the surface of the earth and follow the null geodesics towards the

center of the earth. But then the final area on the light-sheet would vanish: A′ = 0.

Thus, we would fail to exploit the power of the tighter bound (2.4). We would learn

merely that the entropy is smaller than the surface area of the earth, which is a far

weaker statement than the Bekenstein bound.

A better strategy is to take advantage of the fact that the covariant bound does not

require the initial surface A to be closed. This allows us to “X-ray” the system from

the side. Consider parallel light rays which are emitted from a flat disk3 tangential to

the earth, with area A = πR2. An image plate of equal area A may be placed on the

opposite side of the earth (Fig. 3).

We have arranged for the “X-rays” to start out exactly parallel to each other. But

as they traverse the earth, they will be focussed by its mass and hence will begin to

contract. Hence, the final area, A′, will be slightly smaller than A. The rays will not

illuminate all of the final plate, but will miss an annulus of area A−A′. Because gravity

is weak, this area is determined entirely by the contraction of the outermost light rays

(the ones that just skim the earth’s surface). It can be quickly estimated from the

standard bending of light effect.

The deflection angle is of order GM/R. Hence, the width of the annulus is of order

GM , and the area is

A − A′ ≈ GMR. (3.1)

Thus, Eq. (2.4) implies that the entropy of the system obeys

S .
MR

l2
Pl

/G
. (3.2)

3More precisely, one must choose a surface on which the initial expansion of the light rays vanishes

exactly. For weakly gravitating systems, this can always be arranged by deforming the disk slightly

to compensate for deviations from flat space [17].
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emitter

A A’

A−A’
image plate

object

Figure 3: X-raying a weakly gravitating object. Left: spacetime view; right: spatial view

This is the Bekenstein bound (up to factors of order one).4 The full derivation [17] is

independent of any assumptions about the shape of the object and the distribution of

stress-energy. The agreement with the Bekenstein bound then includes the numerical

prefactor.5

It should be stressed that our understanding of the Bekenstein bound is still im-

perfect. The bound is quite sensitive to the precise definition of the entropy contained

in a finite region. As entropy is fundamentally a nonlocal concept, such definitions

are fraught with difficulties. The derivation we have presented does not automatically

resolve this problem, because the entropy S just goes along for the ride.

It will be especially important to understand whether the bound applies to any

field theory satisfying reasonable energy conditions, or whether it imposes further re-

strictions on the Lagrangian. For example, theories with an astronomical number of

species appear to be incompatible with the bound in the formulations proposed in

Refs. [19, 20]. By extension, these questions apply also to the GCEB. They are less

crucial for the original covariant bound. The argument in this paper is not sensitive to

these issues, but it does assume that some rigorous formulation of the bounds exists.

4With the relation l2
Pl

= G~, we could transform this result to the standard form (2.2). This would

be appropriate if we were interested in testing the GCEB through tests of the Bekenstein bound, as

in Ref. [19]. Here, however, we take the GCEB to be true axiomatically and aim to derive Eq. (1.4)

from it. Hence we shall retain the form (3.2).
5For non-spherical systems, one finds that the result obtained from the GCEB is actually stronger

than (2.2).
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4. Derivation of the uncertainty principle

Recall that so far, we have worked entirely in terms of a fundamental length scale, lPl,

which characterizes the maximal information content of the light-sheets of a given sur-

face as a function of its area; and Newton’s constant, G, which measures the geometric

focussing power of the stress-energy of matter. We have not made any explicit use of

quantum field theory.

To obtain finite microcanonical entropy, as demanded by the entropy bound, a

discretization scheme for physical fields is necessary. The canonical equal-time quan-

tization of a relativistic field introduces ~ as a constant that defines the commutator

between a field operator and its canonical conjugate. For example, a scalar field obeys:

[φ(x), φ̇(x′)] = iδ(x − x′)~. (4.1)

In the one-particle sector of Fock space, this implies a nontrivial commutation

relation between the position and momentum operators,

[x̂, p̂x] = i~, etc., (4.2)

which in turn leads to the Heisenberg uncertainty principle

δpxδx ≥ ~/2, etc., (4.3)

where δx ≡ 〈(x̂−〈x̂〉)2〉1/2 and δpx ≡ 〈(p̂x−〈p̂x〉)
2〉1/2. This inequality can be saturated

by Gaussian wavepackets.

A particle of rest mass m which is at least marginally relativistic (p2 & m2) has a

dispersion relation

E =
√

m2 + p2 ≈ |p|, (4.4)

Consider a Gaussian wavepacket with vanishing momentum expectation value, and

with momentum uncertainty δpx ≈ δpy ≈ δpz. Its mass is given by

M = 〈E〉 ≈ |δpx|. (4.5)

Hence, the particle obeys

Mδx ≈ ~. (4.6)

The spatial size of the particle is approximately its position uncertainty, R ≈ δx.

The entropy of a typical particle is given by the logarithm of the number of states of

different spin and hence is of order one. Even when several different particle species are
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allowed, one still obtains S ≈ 1 with the fields we observe in Nature. Hence, Eq. (4.6)

would violate the bound (3.2) unless

~ & l2
Pl

/G. (4.7)

The right hand side of the Heisenberg uncertainty relation (and of the canonical com-

mutation relations) is thus determined from the holographic entropy-area relation and

classical gravity.6

To turn the inequality (4.7) into an approximate equality, we invoke economy

and assume that ~ should be chosen such that it becomes possible to saturate the

Bekenstein bound approximately. The example of an elementary particle discussed in

Sec. 2.2 demonstrates that the bound can indeed be roughly saturated when G~/l2
Pl

is

set to unity.

To go further and obtain an exact equality, ~ = l2
Pl

/G, one would need at least one

example of a system that precisely saturates the Bekenstein bound with this value. This

is an important outstanding problem, along with the question of the proper definition

of entropy in a strict formulation of the bound.
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